Acid phosphatase activity in Coxiella burnetii: a possible virulence factor.
نویسندگان
چکیده
High-speed supernatant fluids derived from sonicated Coxiella burnetii contained considerable acid phosphatase activity when assayed by using 4-methylumbelliferylphosphate; they also contained a factor that blocked superoxide anion production by human neutrophils stimulated with formyl-Met-Leu-Phe. The pH optimum of the enzyme was approximately 5.0. The level of phosphatase activity detected in several isolates of C. burnetii implicated in acute (Nine Mile) and chronic (S Q217, PRS Q177, K Q154) Q fever was 25 to 60 times greater than that reported in other microorganisms, including Leishmania and Legionella spp. The enzyme was found in rickettsiae grown in different hosts (L929 cells and embryonated eggs) and, in the case of L929 cells, for both short periods (less than a month) and the long term (years). Cytochemical techniques coupled with electron microscopy localized the phosphatase activity to the periplasmic gap in the parasite. Ion-exchange chromatography revealed a major species of the enzyme and showed that the enzyme of the parasite was distinct from that of the host cell (L929 fibroblasts); its apparent molecular weight was 74,000. Phosphatase inhibitors (i.e., molybdate heteropolyanions) had differential effects on the phosphatases of the parasite and host cell. C. burnetii supernatant fluid inhibited superoxide anion production by formyl-Met-Leu-Phe-stimulated human neutrophils; molybdate inhibitors reversed the inhibition. Treatment of C. burnetii-infected L929 cells with one of the molybdate compounds (complex B') significantly reduced the level of infection and did not affect the viability or growth of the host cell. These data suggest that the acid phosphatase of the parasite may be a major virulence determinant, allowing the agent to avoid being killed during uptake by phagocytes and subsequently in the phagolysosome.
منابع مشابه
Coxiella burnetii infection increases transferrin receptors on J774A. 1 cells.
Inoculation with viable, but not inactivated, Coxiella burnetii resulted in the increased expression of transferrin receptors (TfR) in the murine macrophage-like cell line J774A.1. This upregulation was evident in immunoblots as early as 6 h postinfection, with TfR levels continuing to increase through the first 24 h of infection. Fluorescent labeling revealed that TfR upregulation occurred thr...
متن کاملDetection of Coxiella burnetii by Real-Time PCR in Raw Milk and Traditional Cheese Distributed in Tehran Province
Coxiella burnetii is common causative agent of Q fever in humans and animals. Although the main route of human infection is through inhalation of contaminated aerosols (dust), but oral transmission through contaminated raw milk and dairy products are also possible routes of infection. The aim of this study was to identify and determine the extent of contamination and prevalence of Coxiella burn...
متن کاملHorizontally Acquired Biosynthesis Genes Boost Coxiella burnetii's Physiology
Coxiella burnetii, the etiologic agent of acute Q fever and chronic endocarditis, has a unique biphasic life cycle, which includes a metabolically active intracellular form that occupies a large lysosome-derived acidic vacuole. C. burnetii is the only bacterium known to thrive within such an hostile intracellular niche, and this ability is fundamental to its pathogenicity; however, very little ...
متن کاملCoxiella burnetii Lipopolysaccharide: What Do We Know?
A small gram-negative bacterium, Coxiella burnetii (C. burnetii), is responsible for a zoonosis called Q fever. C. burnetii is an intracellular bacterium that can survive inside microbicidal cells like monocytes and macrophages by hijacking several functions of the immune system. Among several virulence factors, the lipopolysaccharide (LPS) of C. burnetii is one of the major factors involved in...
متن کاملGenetic mechanisms of Coxiella burnetii lipopolysaccharide phase variation
Coxiella burnetii is an intracellular pathogen that causes human Q fever, a disease that normally presents as a severe flu-like illness. Due to high infectivity and disease severity, the pathogen is considered a risk group 3 organism. Full-length lipopolysaccharide (LPS) is required for full virulence and disease by C. burnetii and is the only virulence factor currently defined by infection of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 61 10 شماره
صفحات -
تاریخ انتشار 1993